Fractal design concepts for stretchable electronics.

نویسندگان

  • Jonathan A Fan
  • Woon-Hong Yeo
  • Yewang Su
  • Yoshiaki Hattori
  • Woosik Lee
  • Sung-Young Jung
  • Yihui Zhang
  • Zhuangjian Liu
  • Huanyu Cheng
  • Leo Falgout
  • Mike Bajema
  • Todd Coleman
  • Dan Gregoire
  • Ryan J Larsen
  • Yonggang Huang
  • John A Rogers
چکیده

Stretchable electronics provide a foundation for applications that exceed the scope of conventional wafer and circuit board technologies due to their unique capacity to integrate with soft materials and curvilinear surfaces. The range of possibilities is predicated on the development of device architectures that simultaneously offer advanced electronic function and compliant mechanics. Here we report that thin films of hard electronic materials patterned in deterministic fractal motifs and bonded to elastomers enable unusual mechanics with important implications in stretchable device design. In particular, we demonstrate the utility of Peano, Greek cross, Vicsek and other fractal constructs to yield space-filling structures of electronic materials, including monocrystalline silicon, for electrophysiological sensors, precision monitors and actuators, and radio frequency antennas. These devices support conformal mounting on the skin and have unique properties such as invisibility under magnetic resonance imaging. The results suggest that fractal-based layouts represent important strategies for hard-soft materials integration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanics of stretchable batteries and supercapacitors

The last decade has witnessed fast developments and substantial achievements that have been shaping the field of stretchable electronics. Due to a persistent need of equally stretchable power sources, especially for some emerging bio-integrated applications enabled by this unusual class of electronics, stretchable energy storage systems have been attracting increasing attentions in the past few...

متن کامل

A hierarchical computational model for stretchable interconnects with fractal-inspired designs

Stretchable electronics that require functional components with high areal coverages, antennas with small sizes and/or electrodes with invisibility under magnetic resonance imaging can benefit from the use of electrical wiring constructs that adopt fractal inspired layouts. Due to the complex and diverse microstructures inherent in high order interconnects/electrodes/antennas with such designs,...

متن کامل

Lateral buckling and mechanical stretchability of fractal interconnects partially bonded onto an elastomeric substrate

Articles you may be interested in Elastomeric substrates with embedded stiff platforms for stretchable electronics Appl. A stretchable temperature sensor based on elastically buckled thin film devices on elastomeric substrates Appl.

متن کامل

Ultra-Stretchable Piezoelectric Nanogenerators via Large-Scale Aligned Fractal Inspired Micro/Nanofibers

Stretchable nanogenerators that directly generate electricity are promising for a wide range of applications in wearable electronics. However, the stretchability of the devices has been a long-standing challenge. Here we present a newly-designed ultra-stretchable nanogenerator based on fractal-inspired piezoelectric nanofibers and liquid metal electrodes that can withstand strain as large as 20...

متن کامل

REVIEW ARTICLE Mechanics of stretchable inorganic electronic materials

Electronic systems that offer elastic mechanical responses to high strain deformation are of growing interest due to their ability to enable new applications whose requirements are impossible to satisfy with conventional wafer-based technologies. This article reviews the mechanics of stretchable inorganic materials on compliant substrates. Specifically, three forms of stretchable structures are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014